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The paper is a continuation of [l 1. The method of auxiliary program const - 
cuctions [2] is developed here for linear evolution systems. 

1, We consider the evolution system 

y’ = A (t)y + f (t, u, u), u E P, 0 E Q (1.1) 

e restrict ounelves to the cases when the solutions 

u [*I, vi.11, t> t, 9 can be treated somehow or other pco- 

t 
n 

(Q.Y[tl) = (q.T(t, &)Y*) + \ <cr.T& r)fK u [zl, vrq)dr (1.2) 
t. 

Here T (G z), t > z , is a suitable semigcoup operator, q is an arbitrary element 
of Y id (q-y> is the scalar product. The norm of y is denoted by the symbol 

II Y II Let Y+J ItI be the value obtained from y [t] in (1.2) by the transform - 
atian T (6, t). Let A, be some linear operator from Y into some Hilbectspace 

Ycy) and let y(u) [tl be the value obtained from ye [tl by transformation A,. 
We assume that for the evolution system [l] 

y(y) 1-l = {y(y) M, t, < t< t*} E {y(~wl~ywt*l, I-I It,, t*)} (le3) 

induced by (1.2) and by the transformation A, T (6, t) we can construct a 3u - 
model which approximates (1.3) from below [l] and is described by the unified dif - 
fecential equation [3 ] 

w. = qE (t, !I) + Pv II Q II = 19 P E p (d (1.4) 

where P (q) is a convex weak compactum in vu) such that <p*q>>Q foe 
p E P (q) and in P (q) there is an element p* for which <p* - q> = 0. Com- 

pacta P (!I) ace assumed to be uniformly bounded. In the terminology of [l] the 
action P’@) it*, t*) on model (1.4) is the choice of the constant control q [tl = 

q*, t, < t < t*, and the action F(l) [t,, t*) is the choice of the weakly 
measurable control p [tl, t, < t < t*. According to [S] the function E (t, q) 
in (1.4 ) can be sought from the condition 

E(t*, q) = lim sup inf sup ( ((I&) [F] -y(Y) tt*wq, 
t*+.+o Ix &)[t’] t*-t* > 

0.5) 

When the conditions from [1] ace fulfilled for transformation A,T (fb, t) the problem 
on the encounter of y [tl with a specified set M can be solved by solving the 

1 
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analogous 
the basis o P 

roblem for Y(‘) ItI- I&t, in its own turn, this roblem can be solved on 
the approximation model (I. 4). Therefore, the o 1. Iect of this paper is to 

set up the problem on encounter with some set M for the motions w [tj of (1.4 ) , 

2, A strategy [l ] prescribes the control J.J 1.1 = {p ItI, Ti < t < ‘Gi+l} as a 
function of {ri, w [7il, Zi+lr p [7J} so that 

P I.1 = U (Zi, W [71]9 Ti+l* q Ixil) (2.1) 

For specified w itof = wet 6 > to and set 

.M = I{t, w} : to f t < 6, w E M (t)l (2.2) 

the problem is to seek a strategy P which for every motion w ItI = w [t, to, w,,, 
P, q [. 11 of (1.4) generated by it ensures the inclusion 

w M E M (t) (2.3 1 

for at least one Z EG [to, 61 for any sequence q [Ti] (i = 0, 1, 2,. . ., To== to). 
In what follows the index Y in the designation of Hilbert space Y is dropped. 

Space Y in the strong topology is denoted Y, and space Y in the weak topology is 

denoted Y,. Function E (t, q) is assumed continuaus in it,, fit x Y, and 
bounded on the weak compactum (11 Q II< I} ; it is assumed to be positive-homo- 

geneous in q, Le., E (t, ap) = GIN (t, 4) for a > 0. We admit the condition 

my min <s* - (45 (6 4) + PI> = E (6 cr*) (2.4) 

II!?1 = 1, PEPG.7) 

for every q*, ljq* 11 = 1. By motion W itI = W It, t*, W*, P* l-1, 4* [‘I1 

we mean a weak solution w [$I of (1.41, defined by the equality 

(2.5) 

which must be valid for every q . 
Suppose that some topological space {c} of parameter C has been chosen and 

that a set Ml C (0 has been defined for every value q E [to, S] . The 

se& (CL are assumed compact and satisfying the condition 

G&L = Q {%, r > rl* (2.6) 

The parametric aggregates of sets 

M 151 = r{t, y> : ‘1 < t < 18, Y E M 0, 511 (2.71 

and of functions E (t, 4, c), where 5 E {5},, and rl E [to, 61 ,are taken 
as chosen, Sets M- (C 5) are bounded, convex and closed and satisfy the inclusion 

M (tl 5) c M (Q (2.3 ) 

In addition, from every admissible sequence (tk &), (IE = I, 2,. . .) we can sep - 
arate a subsequence {tj, &) for which the sets M (tj, &) converge by inclusion 

to set M (t*, f,) . 
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We make a remark. Some sections ikf (t) of set M can be empty. Therefore, 
in what follows, for those expressions in which the variable t occurs as an argument 
in M (t) or in M (b, 5) we could stipulate that we are dealing with only those 
values of t for which these sets are nonempty. We shall omit such a stipulation, but 
will bear it in mind. In any case we shall assume that the sets M (8) and M (e, <) 
are nonempty. 

For a fixed value of t the function E (t, q, 6) is continuous in [TJ, 61 X Y, 
and upper-semicontinuous in [q, 81 x Y,; for a fixed q this function is lower- 
semicontinuous with repsect to 6. We construct the function 

for t, E [q, ‘~1 and ‘G E [t,, @I. Here p (q, z, 5) is the support function 
of set M (T, 5) , Le., 

f (q, z, 5) = m;x <q-y), y t-5 M (‘6, f) (2.10) 

On the basis of (2.9) we construct the function 

80 (6 a) = {m$ z. (t, w, 7, 5), 7 E [t, @l, c E {6}, (2.11) 
+r 

The minimum in (2.11), under the assumption made, is actually achieved on a certain 
pair {z”, r}, as follows from the properties, discussed below, of the function 8’ (t, 

w, z, 6) l We consider the following halfspaces: 

Y (G Q) = [Y : <Q-Y> > E 0, !I)] (2.12 1 

y* (4 Q, 5) = b: <PY> < E (4 QP 01 (2.13 1 

Condition2, 1, For any position {&, We) forwhich 

80 k., WJ > 0, t* <fi, To> t* 
(2.14 1 

for every q*, 11 q* 11 = 1 we can find at least one minimizing pair {z”, 5”) from 
(2. ll), for which 

Y (t*l 4*) n (f-J Y* (t*, QO, 59) # 0 (2.15 1 

where the intersection is taken over the set S (t*, w*, 'f, %? of all maximizing 
elements P from (2.9 ) . The symbol 0 denotes the empty set. 

The following statement is valid. 
Theorem 2. 1. Let e. (t o, wo) = 0. If Condition 2.1 is satisfied, a strategy 

U exists solving the encounter problem (2.3 1. 

a. Let us discuss the properties of function e”. It can be verified that under the 
condition b"(i!,, w*, 7, f) > 0 the maximum in (2.9) is achieved on elements 4” 
with unit norm. For fixed ‘t and 5 the function 8’ (t, w, z, c) is C~~.~.WOUS in 

[q, 21 X Y, and lower-semicontinuous in [q, zj x Y,. The set S (t, W, 6 cj 
of all maximizing elements q” from (2.9) for the position {t, w}, where 8 (t, 
10, z, 6) > 0, is compact in Y,. In the region e” (t, w, z, g) > 0 the sets 
S (t, W, z, g) are strongly upper-semicontinuous by inclusion with respect to the 
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variation of {t, W) in [VJ, 71 x Y,. The proof of Theorem 2.1 uses the following 
fact. 

Ls e m m o 3, I, Let Condition 2. Z oe satisfied and 

80 (t*, w*) > 0 (3.1) 

and let the inequality 

To > t* + y, y > 0 (3.2 f 

be valid for all minimizing z. from (2.11) for position {t*, w*} . Then for every 

9*, II Q* II = 1, and a > 0 we can choose 6* > 0 and a control p [tl = p*, 

t> t*, which satisfies the condition 
<4*-p*> > 0 (3.3) 

and is such that along the solution w ItI = w [tF t*, w*, p*, q*] of equation 

‘ 
w = 8% (4 f2*) -k p* (3.41 

the inequality 

80 (t, w ftl) < 80 (t*, w*) + a (t - t*) (3.5 ) 

is satisfied for all t E [t*, t* $ 6*]. 
We fix the minimizing value {TO, F} for the given position (t*, UJ*~. As a 

consequence of the inexact a0 (t, w [rt) Q a0 (t, w ftt, r*, s”f when t C+S It*, t* + yl , 
to prove Lemma 3.1 it is sufficient to prove the inequality 

E0 (t, w [t], rQ, 5”) < aa (t*, ILI*,T”, 6”) + C.6 (L- t*) (3.6 1 

We choose {z”, 5”) and P* in (3.3 1 from the condi~on 

(9 + Q”E (t*, 4”)) E fJ y* (P, q”, 5”) (3.7 ) 

q” E s (t”, w*, 9, t;“) 

in accord with condition (2,15 1. By the definition of aa we have 
Aa0 *a’(& w [t], z”, f”)--so@*, w*, z”, r) = <q”(t).w [t]> + 

r* 
(3.8 ) 

s 4 (9. P0 (0% 5”)dp - P (qO (% ‘For 5”) - Q0 (t*)*w*> - 
t 
TQ 

s 4 (cp, q” (Q 5”) &’ -P (9’ (t*)+ to, 5”) 

where no (t) is &e maxi~z~g element from (2.9) for position (t, 20 f#. By the 
sense of 4” (t) we hay? the inequality 

(4” (t)‘w*> + s E (cp, q” (t), b”) da, - p (q” (t), To, 6”) < <q” (t*)*w*) + (3.9) 
t* 
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follows from (3.8 ) and (3.9 ). The motion 1~ [tl of (3.4 ) is strongly continuous in 
1. Therefore, as a consequence of the strong semicontinuity of s Ct, w, To, k) 

with respect to (t, 10) from ft*, ro] x ys I for any x > 0 we can find 6, > 0 such 
thatwhen 1 t- t* 1 < 6, < y we can find, for any q0 (t) , an element q" (P) sat- 
isfying the inequality 

II q” 0) - z ft*) II d x (3.11) 

But then, as a consequence of the continuity of % (t, 4, F) in It*, TOI x Yd , from 
(3.10 ) we obtain, according to (3.4 1, the following inequality : 

de” 6 (q” (t*f.(p* -j- s*E (t*, q*))> ft- t*) - (3.12 1 

E tt*, q*, 5”) It - t*) + a (t - t+) 

under the condition t - t* q 6 (a) = 6*, where 6 (a) > 0 is a sufficiently small 
number. By the choice of P* in (3.7) and by the definition (2.13 f of Y*, from(3.12) 
we obtain the needed inequality (3.6 ) and, together with it, inequality (3.5 1. 

4, Let us discuss the properties of function eo. It can be verified that function 
e. (t, w) is lower s~icon~u~ in [to, Sl x Y, and right -continuous with respect 

to t in [to, Fiji Y,at those positions{&, w,)where the minimizing values P> t,. 
Further, for some poeition let 80 (I!*, w,)> 0 and let the minimizing values to from 
(2.11) satisfy the condition $ > t, + y* , ye > 0. Then we can find 6 > 0 such 
that for all positions (t, w) satisfying the condition 

t -t*<s, t> t,, nw-w*pQ (4.1) 

all the mlnirnizing values 2’ will satisfy the condition 

@St+?, Y>O (4.2) 

The following statement is valid. 

L c m m a 4. 1. Let condition 2.1 be satisfied and let the inequalities 

80 @*t Qe) > 0, To > t, -k y*:, Y* > 0 (4.3) 

be fulfilled for a given position {t*, w*}. Then for every Q*, 11 Q* [I = 1 , we can 
choose 6 > 0 and a control. p* [t] E p (g*), t > $ , such that for all t E 

[t,, t, + Sj the inecluality 

80 (4 w id) < go (t,, w*) (4.4) 

is fulfilled for the corresponding solution w ftl =wWft, t*,w*, p* i-1, f&,1 of Eq, (1.4). 
Let us assign a certain value of a > 0. We consider the sheaf of all possible mo- 

tions w tt1 = w I.4 t,, w** p [*I, 4*1, t ZL t* of (l..4),and we single out those motions 
UJ [tl, t* d t 6 7, whose distance from points {t, w) of the region 

e, (tt @ < a0 (t** w*) + a (t- t*) (4.5) 

do not exceed a _t a (t - t*) for each fixed t=Lt*rzl l As a consequence of 
(4.2) and of the right-continuity of function 80 0, 4 .in It*, 81 X Ys t we can find 

6 > 0 and, next, choose CC > 0 so small that the condition 

eo (t, w) > 0, To z t I- Y 
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is satisfied at all the points ( t, w} mentioned. 
We can now assert that for every choice of a sufficiently small cz > 0 ,among the 

motions W [tl selected,we can find at least one motion w ItI deiined for t.+ < t < 
r, + 6. Let us assume to the contrary that this is not so, Let t* d t,, $ 6 be the 

upper bound of values of r for which motions w [t], t* < t < z s of the class de- 
lineated have been defined. At first we assume that among the motions w [t] selected 
there are no motions {w It], t* < t d t*) . Then we continue each motion w [t], t* < 

t<z * up to instant t* by choosing P ftl ES P (Q*), a < t < t* , arbitrarily. Among 
these motions we consider a weakly convergent sequence w@) [t], t* < t < t*, k = 1, 
2 , . . ., for which z(“) - Z* - 0. The weak limit {w* [tl, t* < t < t*) of this 

sequence is generated by some weakly measurable control p* It1 en P (q*) as a con - 
sequence of the weak compactness of all pcssible controls p+ [t] E P fq*) (see E41> l 
But then, because of the lower semicontinuity of function eg (t, w) in [to, 61 x Ys 
we are convinced that we can fiid a point tu such that condition (4.5) is fulfilled and 
the inequality 

Ilw- w* ItI II < cf. + a (t- t*) 

is valid for every point w* [tl, t* d t d t* . Thus, the motion (w Ltl t* ii t d t*) 
constructed belongs to the class delineated, We assume that t* < t* + 6. Let w* be 
a point satisfying the conditions 

II w* - w* It*J Ii d a + cz (t* - t*) 
f&j ft*, w*) < co f&7 w*) + a (t* - t*) 

We select the vector q* -= (w* [PI - w*) /II w* [PI - w* II. If w* [l*1 = w*, we can 
select any vector q*, 11 q* II = 2. By Lemma 3.1 we can choose 6* > 0 and control 

P* in (3,3) such that for all t cc Et*. t* + PI the inequality 

eo (t, w* [tl) d a, (t*, w*) + a (t- t*) < e, (t*, w*) + a (t- t*) (4.6) 

is valid for the corr~~n~ng motion w* [tl = w It, t*, w*, p*, @I, t> t*, of (3.4). 
ff here we choose the control p [t] = p* E P (qt*), t> t* , in accord with (2.4) from 
the condition 

then for the motion w* [t] = w it, t*, w*, p*, q*j generated by it and for the motion 
w* [t] we can obtain the estimate 

1 z#* ft] - w* It] II< a + a (t- t*) + a (t* - k1 = a + a (t- t*1 (4.71 

for all t E It*, t* + 6*,1, where 6,, > 0 is a sufficiently small number. Thus, as 
a consequence of (4.6) and (4.7 ) the motion { w, Itl, t, < t < t* + x}, where x > 0 
is a sufficiently small number, falls into the delineated class of motions w [tl. But 
this contradicts the choice of t*. The contradiction proves that with a chosen 6 > 0 
we can find, for any sufficiently small a. > 0 ) a solution{w, [tl, t* < t< t, Jr 6) 
which satisfies the conditions needed. The weak limit of the motions (w@) It], t, < 

t< t, + 6), k = 1, 2, . . ., constructed for some sequence ak - 0, is the 
motion w [t], t, < t \< t, + 6, satisfying condition (4.4). This proves the lemma. 

The next statement derives from Lemma 4.1. 

Lemma 4. 2. Let pcsition it*, u*} satisfy the condition 
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fJo(&., W,)<% e>o, t*<* 
w, e &P’ (6 5) for a E 10, El, f E (ft.} 

Then for every z* E[t,, 61 and q*, 11 q* 11 = 1 we can find at least one control 

P ItI E p (41;) such that for the corresponding motion w It1 = w It, t,, w*, 
p [. 3, q* ] of (1.4 ) either the condition 

w brl E M@J (z, 5) for 5 E { C}7 (4.9) 

is fulfilled for some value of ‘G E [t,, T*] or the inequaIity 

&I (t, w ItI) < e (4.10 1 

is fulfilled for all f E [t*, z*]. Here the symbol iVIa1 denotes the closed a -neigh- 
borhood of set M. 

Let us consider the sheaf of all possible motions u [tl = uf It, t*, zu*, p I-1, qJ, 

t*-G rbr*, of (4.1). We assume that condition (4.9) is not fulfilled for even one of 
them, Suppose then, to the contrary, that condition (4.10) too is not fnlfilled for even 
one such motion w ft] . Let t* < z* be the upper bound of those t > t, for each 
of which we can find a motion w [t] satisfying condition (4.10) when t* Q t 4 z. As 
in the proof of Lemma 4.1 we can be convinced that then we can find a motion w ItI 
satisfying condition (4.10 ) when t*< t\< t*, Here en (t*, w [t*l) d e and 

70 > r* for all minimizing values V’ corresponding to position (t*, w It*]}. But 
then according to Lemma 4.1 this motion w It1 can be somewhat continued past the 
point t = t* with the inequality a,, (t, w [t]) < F preserved. However, this contradicts 
the definition of the number t* < z* . This contradiction proves Lemma 4.2. 

6, Theorem 2.1 is proved on the basis of the material in Sect, 4 as follows, Sup - 
pose that a partitioning 11\ = {Zi} of th e interval [to, 41 has been chosen.Suppose 
that a position w hi1 (Tt > TO = to) has been realized, for which 

eo (ai, w IZfl) = 0 

w M @ Af (zt, C) for S E {5}*( 

and that the instant ~i+i E (z*, @) and the control q [t] = q [Zi], zi < t < T~+~, 
have been chosen. We specify a sequence (el,> 01, k = 1, 2,. . ., lim 8% = 0 as 
k ct 00. Then by Lemma 4.2 we can construct a sequence of controls p& [fl E P 

(q [‘rij) such that for some subsequence of corresponding motions wtk) It] either the 
condition 

8, (t, wcLt ttl) < ek 

for all zi < t < zi+i or the condition 

w [z&I E MI’s’ (z(‘) 3 %kh fk E {t),(k) 

for some vah.rs 7(k) E [zi, zzi+J is fulfilled l In the first case, because of the weak 
lower semicontinuity of function 130 (t, w) in [to, 61 x Yd the control P* ftl, 
generating the weak limit w* [tl for the subsequence of motions w@) [tl, fmures 
condition 

80 (t, w* bl) = 80 it*, w*) 
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for all t E Iz~, ‘G+~]. In the second case the control p* [t], generating the weak 
limit u$, [tl for the sequence of motions uJkj it], ensures condition 

w* I%$1 e Jf (r*7 5*)* 5* fz (535. 
for a, E [7i, ri+J. Here {Z*, c,} is the limit pair for the sequence {%(“), ck} 

(k 5= 1,2, . . *)* This proves the theorem. 
We cite special cases when the hypotheses of Theorem 2.1 are satisfied. 
1”. When M (t, c) = M (t) and the maximum in (2.9) is achieved on a single 

element sr” for every position {t*, w,} where 8 (t*, w*, z, 5) > 0, z > t, . 
2”. When M is a compactum in [to, 61 x Y, and each set M (t, 5) is a 

point 1M (t, 5) E M (t)) while the intersection il Y (t, 4) = W (t), 4 E Y , is 
nonempty for every t. In this case wedefine fun&ions E (t, q, 5) by the equalities 

5 (t, q, 5) = E+ V, Q) = min <q*y) for y E W (t) 
I/ 

The fulfillment of Condition 2.1 follows from the condition that the maximum in (2.9 ) 
again is achieved on a single element 8 and the halfspace Y (t, qs intersects the 
halfspace Y* (t, $‘, c) = Y,* (t, q“). Therefore every halfspace Y (t, Q) also 
intersects r** (t, @I”). 

3”. When M is a compactum in [to, Sl x Y, and each set M (t, 5) is a 
pointM (t, 5) E M (t), function E (t, q, 5) = - E (t, - q) and function - E 

(t, - q) is concave in q; the intersection of all halfspaces Y* (t, q, I;), q E Y, 
is nonempty. Under the condition that function - g (t, - q) is concave in p each 
halfspace Y (t, q) intersects the intersection flay* (t, q, Q, q E Y. Consequently, 
condition (2.15 ) of Condition 2-l is satisfied. 

Condition 2.1 can be developed somewhat by assuming that in it we can find at 
least one minimizing pair {P, r;O) from (2.11), fi > 0, e 2 0, and a continuous 

function {z (t), I; (t)), ‘G (t.+) = TO, g (t,) = c, t EZ It,, t, + @I, such that 

y ct,, !?*I i-l cn, y* @*, q, x0, C”)) # $23 

ytt*, 4, +f, p9 = b: (!7*Y> < E, tt*, 67, To, 5”)l 
E, (L q, ToI 5”) = Iirn~~~(~(~*, Q, 5”) - 

-* 

(8 - f*)-’ fT; (C 47 5”) (t (4 - x0) + fE ($4 4, j W) - 

C(% QY 5”)@ + P(Q7 r (9, 5 (4) - diq, to, S%f 
for all !I satisfying the condition 11 q - q” 11 < e . 

6. Let us now consider the evasion problem for a system described by the unified 
differential 4. (1.4 1. Let the set 

M = [{t, y): to < t < 6, y E M (01 (6.1) 

be specified. The problem is to find a strategy F’ 

p t*1 = {p M, +ri < t <z&+1} = Y (ri, ZfJ fail, r{+lt 4 [xif) (6.2) 

which for specified {to, WO} ’ and M ensures, for every motion w ItI = w tt, 
to, w,,, v, q [. ]] generated bv it S the evasion 

w [tl cj!i MC (t)’ (6.3) 
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for all t E [to, 81 for some value s> 0 for any sequence q Irjl (i = 0, 1, 
2 ,...; arJ = to). 

Suppose that the parametric aggregates of sets 

M [r;, A) = [{t, y}: q < t d 6, y E M (4 5, VI (6.4) 

and the functions E (4 4, 51, 5 E {G},, h E {h}~, 91 E [to, 61, have been chosen. 
We assume that the sets M (t, 5, X) are defined for all t E [qa, 61, q. E it,, @I, 
are bounded, convex, and closed, vary continuonsly in the Hausdorff metric as t, p, 
and h vary, and satisfy the conditions 

M(QC u hf(r, 
h 

for every c. We assume the sets { 5}* 
responding spaces of parameters Z; and 

59 9 h E WC (6.51 

and {{k},}, to be compacta in the car - 

1; in addition, 

W&, = J-J W&~ rl<rl* 

Wch* = y {{Wm rl’> 11* 

For a fixed value of 6 the function E (t, q, I;) is continuous in [?I,#] x Y, and 
is upper semicontinuous in [q, 61 x Yo; for fixed p this function is continuous 
with respect to c. We constmct the function 

e*(t,, r+, z, 5, V = max((q-w,) i- (6.6) 
MIS 

+ 

s 5 fk Q15) & - P (qt r, 5, A)) 
t. 

for t, E [q, 21, z E It,, 61, when the right-hand side of (6.6) is nonnegative; 
otherwise e* (t,, w*, z, g, h) I: 0. Here p (q, +r, 6, h) is the support function of 
set M (t, %, A). On the basis of (6.6) we construct the function 

e&! (t, w) = min 8” (tt w, z, c, h) (6.7) 
ir,C.hf 

IJ Efc k 61, cl E m, h E my. 

We consider the following halfspaces: Y (t, q) of (2.12 1 and 

y, (G Q* f) = [{t, y): <Y*q) > E (t9 Q9 511 (6.6) 

Condftton 6, 1, For any position {t*, UP) for which 

80 (t*, w *r > B > 09 t* (6 
(6.9) 

and for every q*, fl q* /I = 1 , the condition 

y (r*? q*) n (f-J y* 0*9 QO, 6”)) # 0 (6.10 1 

is valid, where the intersection ranges over all $ from the sets s (t*, W*) of all 
maximizing elements q” of (6.6 ) , corresponding to all the minimizing values {a”, 
co, k”} from (6,7), corresponding to position (t*, w*}. 

The following statement is valid. 
Theorem 6. 1. Let e. (&, w,) = y > @. If Condition 6.1 is fulfilled, a 

strategy V exists solving the evasion problem (6.3 > with e = y. 
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7. Let us discuss the properties of function 80. Under the conditions introduced 
this function is continuous in [&, 61 x Y,. The sets T (t,, w*) of minimizing 
triples {a*, 5”, no) corresponding to position I&,, w*} are upper semicontinuous 
with respect to variation of position {t*, w*} in I&, Q) x Y, for 80 (t,, wJ > 

0, t > t,. The set S (t*, w,) of all maximizing elements u” corresponding 
to Pnprtfon (t*, W*> for all m~imizing values {X0, So, h”} when 80 (t*, we) > 0 

is compact in Ye and these sets S (t*, w,J are upper semicontinuous by inclusion 

with respect to variation of (t*, W*) in [to, 61 x Ya , 
I, c m m & I, 1, When Condition 6.1 is fulfilled we can find an element 

P* E p ((I”) (7.1) 

satisfying the inclusion 

(p” + q*: (t*, 4*)) E f-J Y, (t*, qO, 5”)t q” E s (t*S w*> (7.2) 

We assume, to the contrary, that it is impossible to find such an element P* in 
(7.1) and (7.2 ). Then by the theorem on the separation of convex sets [5 1 we can find 

a linear functional 

f(Y)=QJ*‘Y), lls*II-f (7.3) 

such that 

(q*.P)>a+a, PEP(P) (7.4) 

(q*+0 < a - 8% Y = 3 Y, (b*, 90, Pf. 8 en S (t*, w*), e > 0 (7.5) 

But as a consequence of condition (7,2), relations (7.4 ) and (7.5 1 signify that the in- 
tersection nI’, being considered does not intersect the halfspace Y (t*, q*h con - 
tradicting condition (2.4) which must be fulfilled for every choice of (IS* This contra- 
diction proves Lemma 7.1, 

The proof of Theorem 6.1 relies on the following statement, 

Le m m a 7.2. Let Condition 6.3. be fulfilled and let {t* , w”} be a position in 
region (6.9). Then for every q*, }I q* 11 = 1, anda > Owe can select an admissible 

control p It1 = p*, t > t* , and 8 > 0 such that the penalty 

80 (t, w [tl > Eo (t*, w*) - a (t - t*) (7.6) 

is fulfilled for all t E k*, t* + S] along the corresponding solution w [tl = zu 

It, t*, p*, q*l of Es. (1.4). 
We select a constant control p [tl - p* which satisfies conditions (7.1) and 

(7-Z). Let us estimate the quantity 
As,, = a0 (t, w [tl) - 8, (t*, w*) (7.7 1 

By the definition (6.7 ) of quantity e, (t. W) we have 
+W 

Ae,, = (QO ft)* w VI) + s 5 (cpl 9* (Q, 5” (t)) @ - PW (G to U), 1;” (t). 1” ($))-- 
(7.3 1 

t 
P(P) 

<go @‘)*w*) - s E (qh q” (t”), 5” (PII dg, - P (9” (f*) To O”), t;” (% ilo( 
t* 

where P 01, no (t*f, to (t), r” (t*), 5” (tf, 5” (t*j and ha (t ), ho (t*f are 
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corresponding maximizing elements from (6.6 ) and minimizing elements from (6.7 ) 
associated with the positions {t*, w*} and (t, w (tl} , respectively. $ the definition 
of the minimizing triple {TO, 5”, ho} , from (7.8 > follows the inequality 

(7.9) 

P (9*” W. *@I. 5 (% A0 @I) - <q*” (0*w*> - 
+W 

s EC% q*“(G 5(t))@ - P ho(t), z"(Q 5"(t). h" (Q) 
t* 

where qa” (t) is the maximizing element from (6.6 ) for the position {c+, w*), but for 
the triple IT* (t), k (t), I.’ \t)}. Further, it is sufficient to consider only some right- 
convergent sequence (t&J (k = 1, 2, . . .), 1iI.n ttr = P + 0, for which To (r+ C’(t*), 

5” (rk) + c (t*), h* (ta) + ho (t*) and qIo (tk) - 4” (t*). Then from (7.9) we have 

80 (fkl w itk]) - @O &b mid >, <q" (t*)'(w [tkl - w*b - 
t 

(7.10) 

s 
4 (% ‘f (t*)v t;” (t*)) 4’ - a (tk - t*) 

t* 

Since w [t] is a solution of JZq. (1.4) when q = 9* and P = P* , from (7.10) fol- 
lows the inequality 

80 (tk, w [tkl) - 80 (t*+ uj*jz Kn" (t*)*W + q**F, 0*9 9*11>- (7.11) 

'!i (t*, Q" (t*), 5 (t*))l (tk - t*) - CC (tk - t*) 

if only tk E [t*, t* + 61, where 6 > 0 is a sufficiently small number, The inequality 
proving Lemma 7.2 folXows from (7.11) by condition (7.2) and by the definition(6.8 ) 
of halfspace Y, (t*, I, P) . 

Le mm a 7.3. Let Condition 6.1 be fulfilled and let {t,, w*} be the position 
for which e, (t,, w*) = y > p, t, < 6. Then for every go, 11 qJ = 1 , and 
I? E [t,, S], a > 0 , we can choose an admissible control p ftl = p* Itl, 
t > t,, such that the inequality 

80 (t, w @)I > 80 @*, w*) - a 0 - t*) (7.12) 

is fulfilled for all i? E [&, T*j along the corresponding motion w [tl = W ft, t,, 

p* 1.1, !?*I of(1*4). 
Let t* be the upper bound of the values of r for which condition (‘7.12) can 

be fulfilled for t, < t & Z. As in Sect. 4 we can verify on the basis of the continuity 
of function e. (t, w) that there exists an admissible control P* ItI, t, < t < t*, which 
ensures inequality (7.12) for t* < t < t*. But then, if t*<@, according toLemma 
7.2 we can continue this control p [t] somewhat past the point t*, so that condition 
(‘7.12 ) is fulfilled for t, d t Q t* f 6, 6 > 0. But this contradicts the choice of 
number r* + and this proves Lemma 7.3, 

8, Theorem 6.1 is proved on the basis of the preceding material as follows. Sup- 
pose that a partitioning L\ = (~~1 of the interval It,, $1 has been chosen. Let a 
position w [TV], (pi > z. = do) be realized for which 

80 (zt, 20 [Ttl) = y > fi 

and let an instant ~~~~ E (a:, @) and a control q [tf = q Iztl, zs < t < zi+l, 
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be chosen. We specify a sequence {E, > 0) (k = 

k + 00. Then in accord with Lemma 7.3 we can 
pc [t] such that condition 

1, 2,. . .), Jim ek = 0 as 
construct a sequence of controls 

80 (t, dk) ItI) > Eo (t,, W,) - Ek. 

is fulfilled for all ‘ci < t < zli+l for some subsequence of corresponding motions 
r.@(k) [tl l Because of the continuity of function a50 (t, w) in [lo, Sl x Y, 

the control p* [t] generating the weak limit w* [t) for the subsequence of motions 
wfk) It] ensures the condition 

eo (t, w* Df) > a0 ft,, w*) = ?i 

for all t e [‘ri, a++& This proves Theorem 6.1. 
Particular cases, when the hypotheses of Theorem 6.1 are fulfilled, are: 1) when 

section &f (t) varies con~nu~sly as t varies and each set M (t, (s, A) is a 

continuous curve m (t, c, 1) E Icf (t) h w en q .$ t < 6 ;for each value of t and Q 

y (tl q) n w (Q =+ @ 
where the w (t) are closed convex sets, and E (t, 4, 5) = min <y*q) for Y E 

w (Q; 2) when under the same assumptions on sets M (t) and jl4 (t, 5, X) for 
each value 

n Y:g(k, 4, 5)+ 0, 4EY 
Q 

and E (t, q, 5) = - g (t, - q) and function - ?j (t, - q) is concave in 4. 
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